Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.826
Filtrar
1.
BMC Oral Health ; 24(1): 491, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664718

RESUMEN

BACKGROUND: Recent randomized clinical trials suggest that the effect of using cetylpyridinium chloride (CPC) mouthwashes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load in COVID-19 patients has been inconsistent. Additionally, no clinical study has investigated the effectiveness of on-demand aqueous chlorine dioxide mouthwash against COVID-19. METHODS: We performed a randomized, placebo-controlled, open-label clinical trial to assess for any effects of using mouthwash on the salivary SARS-CoV-2 viral load among asymptomatic to mildly symptomatic adult COVID-19-positive patients. Patients were randomized to receive either 20 mL of 0.05% CPC, 10 mL of 0.01% on-demand aqueous chlorine dioxide, or 20 mL of placebo mouthwash (purified water) in a 1:1:1 ratio. The primary endpoint was the cycle threshold (Ct) values employed for SARS-CoV-2 salivary viral load estimation. We used linear mixed-effects models to assess for any effect of the mouthwashes on SARS-CoV-2 salivary viral load. RESULTS: Of a total of 96 eligible participants enrolled from November 7, 2022, to January 19, 2023, 90 were accepted for the primary analysis. The use of 0.05% CPC mouthwash was not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.640; 95% confidence interval [CI], -1.425 to 2.706; P = 0.543); 2 h (difference vs. placebo, 1.158; 95% CI, -0.797 to 3.112; P = 0.246); 4 h (difference vs. placebo, 1.283; 95% CI, -0.719 to 3.285; P = 0.209); 10 h (difference vs. placebo, 0.304; 95% CI, -1.777 to 2.385; P = 0.775); or 24 h (difference vs. placebo, 0.782; 95% CI, -1.195 to 2.759; P = 0.438). The use of 0.01% on-demand aqueous chlorine dioxide mouthwash was also not shown to be superior to placebo in change from baseline salivary Ct value at 30 min (difference vs. placebo, 0.905; 95% CI, -1.079 to 2.888; P = 0.371); 2 h (difference vs. placebo, 0.709; 95% CI, -1.275 to 2.693; P = 0.483); 4 h (difference vs. placebo, 0.220; 95% CI, -1.787 to 2.226; P = 0.830); 10 h (difference vs. placebo, 0.198; 95% CI, -1.901 to 2.296; P = 0.854); or 24 h (difference vs. placebo, 0.784; 95% CI, -1.236 to 2.804; P = 0.447). CONCLUSIONS: In asymptomatic to mildly symptomatic adults with COVID-19, compared to placebo, the use of 0.05% CPC and 0.01% on-demand aqueous chlorine dioxide mouthwash did not lead to a significant reduction in SARS-CoV-2 salivary viral load. Future studies of the efficacy of CPC and on-demand aqueous chlorine dioxide mouthwash on the viral viability of SARS-CoV-2 should be conducted using different specimen types and in multiple populations and settings.


Asunto(s)
COVID-19 , Cetilpiridinio , Antisépticos Bucales , Saliva , Carga Viral , Humanos , Antisépticos Bucales/uso terapéutico , Carga Viral/efectos de los fármacos , Saliva/virología , Masculino , Femenino , Adulto , Cetilpiridinio/uso terapéutico , Persona de Mediana Edad , SARS-CoV-2 , Compuestos de Cloro/uso terapéutico , Compuestos de Cloro/farmacología , Óxidos/uso terapéutico , Anciano
2.
ACS Sens ; 9(4): 1938-1944, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38591496

RESUMEN

The adsorption of oxygen and its reaction with target gases are the basis of the gas detection mechanism by using metal oxides. Here, we present a theoretical analysis of the sensor response, within the ionosorption model, for an n-type polycrystalline semiconductor. Our goal of our work is to reveal the mechanisms of gas sensing from a fundamental point of view. We revisit the existing models in which the sensor response presents a power-law behavior with a reducing gas partial pressure. Then, we show, based on the Wolkenstein theory of chemisorption, that the sensor response depends not only on the reducing gas partial pressure but also on the oxygen partial pressure. We also find that the obtained sensor response does not explicitly depend on the grain size, and if it does, it is exclusively through the rate constants related to the involved reactions.


Asunto(s)
Gases , Óxidos , Oxígeno , Oxígeno/química , Óxidos/química , Gases/química , Semiconductores , Presión , Metales/química , Adsorción , Oxidación-Reducción
3.
ACS Sens ; 9(4): 1896-1905, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38626402

RESUMEN

With the escalating global awareness of air quality management, the need for continuous and reliable monitoring of toxic gases by using low-power operating systems has become increasingly important. One of which, semiconductor metal oxide gas sensors have received great attention due to their high/fast response and simple working mechanism. More specifically, self-heating metal oxide gas sensors, wherein direct thermal activation in the sensing material, have been sought for their low power-consuming characteristics. However, previous works have neglected to address the temperature distribution within the sensing material, resulting in inefficient gas response and prolonged response/recovery times, particularly due to the low-temperature regions. Here, we present a unique metal/metal oxide/metal (MMOM) nanowire architecture that conductively confines heat to the sensing material, achieving high uniformity in the temperature distribution. The proposed structure enables uniform thermal activation within the sensing material, allowing the sensor to efficiently react with the toxic gas. As a result, the proposed MMOM gas sensor showed significantly enhanced gas response (from 6.7 to 20.1% at 30 ppm), response time (from 195 to 17 s at 30 ppm), and limit of detection (∼1 ppm) when compared to those of conventional single-material structures upon exposure to carbon monoxide. Furthermore, the proposed work demonstrated low power consumption (2.36 mW) and high thermal durability (1500 on/off cycles), demonstrating its potential for practical applications in reliable and low-power operating gas sensor systems. These results propose a new paradigm for power-efficient and robust self-heating metal oxide gas sensors with potential implications for other fields requiring thermal engineering.


Asunto(s)
Gases , Nanocables , Óxidos , Nanocables/química , Gases/química , Gases/análisis , Óxidos/química , Metales/química
4.
Biosensors (Basel) ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667179

RESUMEN

Nano-doped hollow fiber is currently receiving extensive attention due to its multifunctionality and booming development. However, the microfluidic fabrication of nano-doped hollow fiber in a simple, smooth, stable, continuous, well-controlled manner without system blockage remains challenging. In this study, we employ a microfluidic method to fabricate nano-doped hollow fiber, which not only makes the preparation process continuous, controllable, and efficient, but also improves the dispersion uniformity of nanoparticles. Hydrogel hollow fiber doped with carbon nanotubes is fabricated and exhibits superior electrical conductivity (15.8 S m-1), strong flexibility (342.9%), and versatility as wearable sensors for monitoring human motions and collecting physiological electrical signals. Furthermore, we incorporate iron tetroxide nanoparticles into fibers to create magnetic-driven micromotors, which provide trajectory-controlled motion and the ability to move through narrow channels due to their small size. In addition, manganese dioxide nanoparticles are embedded into the fiber walls to create self-propelled micromotors. When placed in a hydrogen peroxide environment, the micromotors can reach a top speed of 615 µm s-1 and navigate hard-to-reach areas. Our nano-doped hollow fiber offers a broad range of applications in wearable electronics and self-propelled machines and creates promising opportunities for sensors and actuators.


Asunto(s)
Técnicas Biosensibles , Microfluídica , Nanotubos de Carbono , Dispositivos Electrónicos Vestibles , Nanotubos de Carbono/química , Humanos , Conductividad Eléctrica , Compuestos de Manganeso/química , Nanopartículas , Óxidos/química
5.
Clin Oral Investig ; 28(5): 275, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668793

RESUMEN

OBJECTIVES: To assess the effect of cryotherapy on haemostasis, post-operative pain, and the outcome of full pulpotomy performed in mature permanent teeth with symptomatic irreversible pulpitis. MATERIALS AND METHODS: The study included sixty mature permanent mandibular molar teeth with symptomatic irreversible pulpitis and no periapical rarefaction. After coronal pulp tissue amputation, teeth were randomly allocated to one of two groups (n = 30 each). In group I (conventional pulpotomy), a sterile cotton pellet moistened with 2.5% NaOCl was used for haemostasis. In group II (cryotherapy), the pulp chamber was continuously lavaged with 2.50C normal saline solution for haemostasis using an indigenous portable cryotherapy irrigation unit. Following haemostasis, the pulp was capped with mineral trioxide aggregate and the tooth was restored with resin composite. The time taken to achieve haemostasis was recorded. Preoperative and 24, 48 and 72 h postoperative pain was measured using the Numerical Rating Scale. The pulpotomy outcome was assessed at the 12-month follow-up. Data were analyzed using Fischer's exact test, two-sample t-test, two-sample Wilcoxon rank-sum test, Friedman Test, and Wilcoxon Signed Rank Test. RESULTS: The cryotherapy group achieved haemostasis in less time (p < 0.05). There was a significant pain reduction at 24 and 48 h in the cryotherapy group when compared with the conventional pulpotomy group (P < 0.005). The overall success rate of pulpotomy after 12 months was 88% (n = 22) in both study groups(p < 0.05). CONCLUSIONS: Cryotherapy application reduces postoperative pain and has no adverse effect on the outcome of pulpotomy in permanent teeth with symptomatic irreversible pulpitis. CLINICAL RELEVANCE: The cryotherapy can be incorporated in pulpotomy protocol as an adjunct to minimize post-operative pain.


Asunto(s)
Compuestos de Calcio , Crioterapia , Diente Molar , Dolor Postoperatorio , Pulpitis , Pulpotomía , Silicatos , Humanos , Pulpotomía/métodos , Pulpitis/terapia , Pulpitis/cirugía , Crioterapia/métodos , Femenino , Masculino , Dolor Postoperatorio/terapia , Silicatos/uso terapéutico , Adulto , Resultado del Tratamiento , Compuestos de Calcio/uso terapéutico , Dimensión del Dolor , Óxidos/uso terapéutico , Compuestos de Aluminio/uso terapéutico , Combinación de Medicamentos , Hipoclorito de Sodio/uso terapéutico , Dentición Permanente , Adolescente
6.
J Colloid Interface Sci ; 665: 1065-1078, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38579389

RESUMEN

Reactive oxygen species (ROS)-centered chemodynamic therapy (CDT) holds significant potential for tumor-specific treatment. However, insufficient endogenous H2O2 and extra glutathione within tumor microenvironment (TME) severely deteriorate the CDT's effectiveness. Herein, rich-Zn-Co3O4/N-doped porous carbon (Zn-Co3O4/NC) was fabricated by two-step pyrolysis, and applied to build high-efficiency nano-platform for synergistic cancer therapy upon combination with glucose oxidase (GOx), labeled Zn-Co3O4/NC-GOx for clarity. Specifically, the multiple enzyme-like activities of the Zn-Co3O4/NC were scrutinously investigated, including peroxidase-like activity to convert H2O2 to O2∙-, catalase-like activity to decompose H2O2 into O2, and oxidase-like activity to transform O2 to O2∙-, which achieved the CDT through the catalytic cascade reaction. Simultaneously, GOx reacted with intracellular glucose to produce gluconic acid and H2O2, realizing starvation therapy. In the acidic TME, the Zn-Co3O4/NC-GOx rapidly caused intracellular Zn2+ pool overload and disrupted cellular homeostasis for ion-intervention therapy. Additionally, the Zn-Co3O4/NC exhibited glutathione peroxidase-like activity, which consumed glutathione in tumor cells and reduced the ROS consumption for ferroptosis. The tumor treatments offer some constructive insights into the nanozyme-mediated catalytic medicine, coupled by avoiding the TME limitations.


Asunto(s)
Cobalto , Peróxido de Hidrógeno , Neoplasias , Óxidos , Humanos , Porosidad , Especies Reactivas de Oxígeno , Glucosa Oxidasa , Imidazoles , Carbono , Glutatión , Zinc , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
7.
ACS Appl Mater Interfaces ; 16(15): 18300-18310, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38574271

RESUMEN

To tackle the proliferation of pathogenic microorganisms without relying on antibiotics, innovative materials boasting antimicrobial properties have been engineered. This study focuses on the development of graphene oxide/silver (GO/Ag) nanocomposites, derived from partially reduced graphene oxide adorned with silver nanoparticles. Various nanocomposites with different amounts of silver (GO/Ag-1, GO/Ag-2, GO/Ag-3, and GO/Ag-4) were synthesized, and their antibacterial efficacy was systematically studied. The silver nanoparticles were uniformly deposited on the partially reduced graphene oxide surface, exhibiting spherical morphologies with an average size of 25 nm. The nanocomposites displayed potent antibacterial properties against both gram-positive bacteria (S. aureus and B. subtilis) and gram-negative bacteria (E. coli and S. enterica) as confirmed by minimum inhibition concentration (MIC) studies and time-dependent experiments. The optimal MIC for Gram-positive bacteria was 62.5 µg/mL and for Gram-negative bacteria was 125 µg/mL for the GO/Ag nanocomposites. Bacterial cells that encountered the nanocomposite films exhibited significantly greater inhibitory effects compared to those exposed to conventional antibacterial materials. Furthermore, the cytotoxicity of these nanocomposites was assessed using human epithelial cells (HEC), revealing that GO/Ag-1 and GO/Ag-2 exhibited lower toxicity levels toward HEC and remained compatible even at higher dilution rates. This study underscores the potential of GO/Ag-based nanocomposites as versatile materials for antibacterial applications, particularly as biocompatible wound dressings, offering promising prospects for wound healing and infection control.


Asunto(s)
Grafito , Nanopartículas del Metal , Nanocompuestos , Humanos , Plata/farmacología , Staphylococcus aureus , Escherichia coli , Óxidos/farmacología , Antibacterianos/farmacología , Grafito/farmacología
8.
ACS Chem Neurosci ; 15(8): 1684-1701, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564598

RESUMEN

Copper oxide nanoparticles (CuO-NPs) are commonly used metal oxides. Betaine possesses antioxidant and neuroprotective activities. The current study aimed to investigate the neurotoxic effect of CuO-NPs on rats and the capability of betaine to mitigate neurotoxicity. Forty rats; 4 groups: group I a control, group II intraperitoneally CuO-NPs (0.5 mg/kg/day), group III orally betaine (250 mg/kg/day) and CuO-NPs, group IV orally betaine for 28 days. Rats were subjected to neurobehavioral assessments. Brain samples were processed for biochemical, molecular, histopathological, and immunohistochemical analyses. Behavioral performance of betaine demonstrated increasing locomotion and cognitive abilities. Group II exhibited significantly elevated malondialdehyde (MDA), overexpression of interleukin-1 beta (IL-1ß), and tumor necrosis factor-alpha (TNF-α). Significant decrease in glutathione (GSH), and downregulation of acetylcholine esterase (AChE), nuclear factor erythroid 2-like protein 2 (Nrf-2), and superoxide dismutase (SOD). Histopathological alterations; neuronal degeneration, pericellular spaces, and neuropillar vacuolation. Immunohistochemically, an intense immunoreactivity is observed against IL-1ß and glial fibrillary acidic protein (GFAP). Betaine partially neuroprotected against CuO-NPs associated alterations. A significant decrease at MDA, downregulation of IL-1ß, and TNF-α, a significant increase at GSH, and upregulation of AChE, Nrf-2, and SOD. Histopathological alterations partially ameliorated. Immunohistochemical intensity of IL-1ß and GFAP reduced. It is concluded that betaine neuroprotected against most of CuO-NP neurotoxic effects through antioxidant and cell redox system stimulating efficacy.


Asunto(s)
Cobre , Nanopartículas , Ratas , Animales , Cobre/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Betaína/farmacología , Estrés Oxidativo , Factor de Necrosis Tumoral alfa/metabolismo , Superóxido Dismutasa/metabolismo , Glutatión/metabolismo , Encéfalo/metabolismo , Óxidos/metabolismo , Óxidos/farmacología
9.
Bull Environ Contam Toxicol ; 112(4): 52, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565801

RESUMEN

The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.


Asunto(s)
Brassica , Nanopartículas del Metal , Nanopartículas , Cobre/toxicidad , Disponibilidad Biológica , Suelo , Óxidos , Clorofila , Ácido Pentético , Nanopartículas del Metal/toxicidad
10.
Mikrochim Acta ; 191(5): 239, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38570399

RESUMEN

To accurately detect tumor marker carbohydrate antigen 72-4 (CA72-4) of serum samples is of great significance for the early diagnosis of malignant tumors. In the present study, MnO2/hollow nanobox metal-organic framework (HNM)-AuPtPd nanocomposites were prepared via multi-step synthesis and superposition method and a series of characterizations were carried out. A highly sensitive immunosensor Ab/MnO2/HNM-AuPtPd/GCE based on the composite nanomaterial was further prepared and used to detect the tumor marker CA72-4. The constructed immunosensor achieved signal amplification by increasing the electrocatalytic activity to H2O2 by means of the synergistic effect of MnO2 ultra-thin nanosheets (MnO2 UNs) and HNM-AuPtPd. At the same time, the electrochemical properties of the immunosensor were analyzed using cyclic voltammetry, electrochemical impedance, amperometry (with the test voltage of -0.4 V), and differential pulse voltammetry. The experimental results showed that the MnO2/HNM-AuPtPd nanocomposites were successfully prepared, and the immunosensor Ab/MnO2/HNM-AuPtPd/GCE demonstrated an excellent electrochemical performance. The electrochemical immunosensor had the highest detection sensitivity under the optimal experimental conditions, such as incubation pH of 7.0, incubation time of 60 min, with the addition of 15 µL of H2O2, and in the concentration range 0.001-500 U/mL. It had a low detection limit of 1.78×10-5 U/mL (S/N = 3). Moreover, the serum sample recovery were in the range from 99.38 to 100.52%. This study provides a new method and experimental basis for the detection of tumor markers in clinical practice.


Asunto(s)
Antígenos de Carbohidratos Asociados a Tumores , Técnicas Biosensibles , Nanocompuestos , Biomarcadores de Tumor , Técnicas Biosensibles/métodos , Peróxido de Hidrógeno/química , Compuestos de Manganeso/química , Óxidos/química , Inmunoensayo , Nanocompuestos/química
11.
PLoS One ; 19(4): e0301075, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38564619

RESUMEN

In the field of soil mechanics, especially in transportation and environmental geotechnics, the use of machine learning (ML) techniques has emerged as a powerful tool for predicting and understanding the compressive strength behavior of soils especially graded ones. This is to overcome the sophisticated equipment, laboratory space and cost needs utilized in multiple experiments on the treatment of soils for environmental geotechnics systems. This present study explores the application of machine learning (ML) techniques, namely Genetic Programming (GP), Artificial Neural Networks (ANN), Evolutionary Polynomial Regression (EPR), and the Response Surface Methodology in predicting the unconfined compressive strength (UCS) of soil-lime mixtures. This was for purposes of subgrade and landfill liner design and construction. By utilizing input variables such as Gravel, Sand, Silt, Clay, and Lime contents (G, S, M, C, L), the models forecasted the strength values after 7 and 28 days of curing. The accuracy of the developed models was compared, revealing that both ANN and EPR achieved a similar level of accuracy for UCS after 7 days, while the GP model performed slightly lower. The complexity of the formula required for predicting UCS after 28 days resulted in decreased accuracy. The ANN and EPR models achieved accuracies of 85% and 82%, with R2 of 0.947 and 0.923, and average error of 0.15 and 0.18, respectively, while the GP model exhibited a lower accuracy of 66.0%. Conversely, the RSM produced models for the UCS with predicted R2 of more than 98% and 99%, for the 7- and 28- day curing regimes, respectively. The RSM also produced adequate precision in modelling UCS of more than 14% against the standard 7%. All input factors were found to have almost equal importance, except for the lime content (L), which had an average influence. This shows the importance of soil gradation in the design and construction of subgrade and landfill liners. This research further demonstrates the potential of ML techniques for predicting the strength of lime reconstituted G-S-M-C graded soils and provides valuable insights for engineering applications in exact and sustainable subgrade and liner designs, construction and performance monitoring and rehabilitation of the constructed civil engineering infrastructure.


Asunto(s)
Compuestos de Calcio , Suelo , Suelo/química , Fuerza Compresiva , Compuestos de Calcio/química , Óxidos/química
12.
Parasitol Res ; 123(4): 192, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652173

RESUMEN

The pathogenic free-living amoebae, Naegleria fowleri and Acanthamoeba polyphaga, are found in freshwater, soil, and unchlorinated or minimally chlorinated swimming pools. N. fowleri and A. polyphaga are becoming problematic as water leisure activities and drinking water are sources of infection. Chlorine dioxide (ClO2) gas is a potent disinfectant that is relatively harmless to humans at the concentration used for disinfection. In this study, we examined the amoebicidal effects of ClO2 gas on N. fowleri and A. polyphaga. These amoebae were exposed to ClO2 gas from a ready-to-use product (0.36 ppmv/h) for 12, 24, 36, and 48 h. Microscopic examination showed that the viability of N. fowleri and A. polyphaga was effectively inhibited by treatment with ClO2 gas in a time-dependent manner. The growth of N. fowleri and A. polyphaga exposed to ClO2 gas for 36 h was completely inhibited. In both cases, the mRNA levels of their respective actin genes were significantly reduced following treatment with ClO2 gas. ClO2 gas has an amoebicidal effect on N. fowleri and A. polyphaga. Therefore, ClO2 gas has been proposed as an effective agent for the prevention and control of pathogenic free-living amoeba contamination.


Asunto(s)
Acanthamoeba , Compuestos de Cloro , Desinfectantes , Naegleria fowleri , Óxidos , Compuestos de Cloro/farmacología , Naegleria fowleri/efectos de los fármacos , Acanthamoeba/efectos de los fármacos , Óxidos/farmacología , Desinfectantes/farmacología , Factores de Tiempo , Análisis de Supervivencia , Amebicidas/farmacología
13.
Mikrochim Acta ; 191(5): 282, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652326

RESUMEN

A novel dual-mode fluorometric and colorimetric sensing platform is reported for determining glutathione S-transferase (GST) by utilizing polyethyleneimine-capped silver nanoclusters (PEI-AgNCs) and cobalt-manganese oxide nanosheets (CoMn-ONSs) with oxidase-like activity. Abundant active oxygen species (O2•-) can be produced through the CoMn-ONSs interacting with dissolved oxygen. Afterward, the pink oxDPD was generated through the oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) by O2•-, and two absorption peaks at 510 and 551 nm could be observed. Simultaneously, oxDPD could quench the fluorescence of PEI-AgNCs at 504 nm via the inner filter effect (IFE). However, in the presence of glutathione (GSH), GSH prevents the oxidation of DPD due to the reducibility of GSH, leading to the absorbance decrease at 510 and 551 nm. Furthermore, the fluorescence at 504 nm was restored due to the quenching effect of oxDPD on decreased PEI-AgNCs. Under the catalysis of GST, GSH and1-chloro-2,4-dinitrobenzo (CDNB) conjugate to generate an adduct, initiating the occurrence of the oxidation of the chromogenic substrate DPD, thereby inducing a distinct colorimetric response again and the significant quenching of PEI-AgNCs. The detection limits for GST determination were 0.04 and 0.21 U/L for fluorometric and colorimetric modes, respectively. The sensing platform illustrated reliable applicability in detecting GST in real samples.


Asunto(s)
Cobalto , Colorimetría , Glutatión Transferasa , Compuestos de Manganeso , Nanopartículas del Metal , Óxidos , Polietileneimina , Plata , Polietileneimina/química , Plata/química , Cobalto/química , Óxidos/química , Compuestos de Manganeso/química , Nanopartículas del Metal/química , Colorimetría/métodos , Glutatión Transferasa/metabolismo , Glutatión Transferasa/química , Límite de Detección , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Humanos , Glutatión/química , Oxidación-Reducción , Técnicas Biosensibles/métodos , Fenilendiaminas/química , Nanoestructuras/química
14.
Mikrochim Acta ; 191(5): 264, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622377

RESUMEN

Silver nanoparticles supported on metal-organic framework (ZIF-67)-derived Co3O4 nanostructures (Ag NPs/Co3O4) were synthesized via a facile in situ reduction strategy. The resulting materials exhibited pH-switchable peroxidase/catalase-like catalytic activity. Ag NP doping greatly enhanced the catalytic activity of Ag NPs/Co3O4 towards 3,3',5,5'-tetramethylbenzidine (TMB) oxidation and H2O2 decomposition which were 59 times (A652 of oxTMB) and 3 times (A240 of H2O2) higher than that of ZIF-67, respectively. Excitingly, thiophanate-methyl (TM) further enhanced the peroxidase-like activity of Ag NPs/Co3O4 nanozyme due to the formation of Ag(I) species in TM-Ag NPs/Co3O4 and generation of more radicals resulting from strong interaction between Ag NPs and TM. The TM-Ag NPs/Co3O4 nanozyme exhibited lower Km and higher Vmax values towards H2O2 when compared with Ag NPs/Co3O4 nanozyme. A simple, bioelement-free colorimetric TM detection method based on Ag NPs/Co3O4 nanozyme via analyte-enhanced sensing strategy was successfully established with high sensitivity and selectivity. Our study demonstrated that hybrid noble metal NPs/MOF-based nanozyme can be a class of promising artificial nanozyme in environmental and food safety applications.


Asunto(s)
Cobalto , Nanopartículas del Metal , Óxidos , Tiofanato , Nanopartículas del Metal/química , Colorimetría/métodos , Peróxido de Hidrógeno/química , Plata/química , Peroxidasas
15.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612484

RESUMEN

Twenty 2-(4-alkyloxyphenyl)-imidazolines and 2-(4-alkyloxyphenyl)-imidazoles were synthesized, with the former being synthesized in two steps by using MW and ultrasonication energy, resulting in good to excellent yields. Imidazoles were obtained in moderate yields by oxidizing imidazolines with MnO2 and MW energy. In response to the urgent need to treat neglected tropical diseases, a set of 2-(4-alkyloxyphenyl)- imidazolines and imidazoles was tested in vitro on Leishmania mexicana and Trypanosoma cruzi. The leishmanicidal activity of ten compounds was evaluated, showing an IC50 < 10 µg/mL. Among these compounds, 27-31 were the most active, with IC50 values < 1 µg/mL (similar to the reference drugs). In the evaluation on epimastigotes of T. cruzi, only 30 and 36 reached an IC50 < 1 µg/mL, showing better inhibition than both reference drugs. However, compounds 29, 33, and 35 also demonstrated attractive trypanocidal activities, with IC50 values < 10 µg/mL, similar to the values for benznidazole and nifurtimox.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Imidazolinas , Leishmania mexicana , Trypanosoma cruzi , Humanos , Imidazoles/farmacología , Compuestos de Manganeso , Óxidos , Antiprotozoarios/farmacología
16.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612928

RESUMEN

In this study, we explored the formation of CuO nanoparticles, NiO nanoflakes, and CuO-NiO nanocomposites using saponin extract and a microwave-assisted hydrothermal method. Five green synthetic samples were prepared using aqueous saponin extract and a microwave-assisted hydrothermal procedure at 200 °C for 30 min. The samples were pristine copper oxide (100C), 75% copper oxide-25% nickel oxide (75C25N), 50% copper oxide-50% nickel oxide (50C50N), 25% copper oxide-75% nickel oxide (25C75N), and pristine nickel oxide (100N). The samples were characterized using FT-IR, XRD, XPS, SEM, and TEM. The XRD results showed that copper oxide and nickel oxide formed monoclinic and cubic phases, respectively. The morphology of the samples was useful and consisted of copper oxide nanoparticles and nickel oxide nanoflakes. XPS confirmed the +2 oxidation state of both the copper and nickel ions. Moreover, the optical bandgaps of copper oxide and nickel oxide were determined to be in the range of 1.29-1.6 eV and 3.36-3.63 eV, respectively, and the magnetic property studies showed that the synthesized samples exhibited ferromagnetic and superparamagnetic properties. In addition, the catalytic activity was tested against para-nitrophenol, demonstrating that the catalyst efficiency gradually improved in the presence of CuO. The highest rate constants were obtained for the 100C and 75C25N samples, with catalytic efficiencies of 98.7% and 78.2%, respectively, after 45 min.


Asunto(s)
Nanocompuestos , Níquel , Saponinas , Cobre , Microondas , Espectroscopía Infrarroja por Transformada de Fourier , Óxidos
17.
Biosens Bioelectron ; 256: 116275, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38603839

RESUMEN

Constructing relatively inexpensive nanomaterials to simulate the catalytic performance of laccase is of great significance in recent years. Although research on improving laccase-like activity by regulating ligands of copper (amino acids or small organic molecules, etc.) have achieved remarkable success. There are few reports on improving laccase-like activity by adjusting the composition of metal Cu. Here, we used perovskite hydroxide AB(OH)6 as a model to evaluate the relationship between Cu based alloys and their laccase-like activity. We found that when the Cu/Mn alloy ratio of the perovskite hydroxide A point is greater than 1, the laccase-like activity of the binary alloy perovskite hydroxide is higher than that of the corresponding single Cu. Based on the measurements of XPS and ICP-MS, we deduced that the improvements of laccase-like activity mainly attribute to the ratio of Cu+/Cu2+and the content of Cu. Moreover, two types of substrates (toxic pollutants and catechol neurotransmitters) were used to successfully demonstrated such nanozymes' excellent environmental protecting function and biosensing property. This work will provide a novel approach for the construction and application of laccase-like nanozymes in the future.


Asunto(s)
Técnicas Biosensibles , Cobre , Lacasa , Óxidos , Titanio , Lacasa/química , Lacasa/metabolismo , Técnicas Biosensibles/métodos , Cobre/química , Titanio/química , Óxidos/química , Hidróxidos/química , Compuestos de Calcio/química , Restauración y Remediación Ambiental/métodos , Catecoles/análisis , Catecoles/química , Materiales Biomiméticos/química , Catálisis
18.
J Hazard Mater ; 470: 134198, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608582

RESUMEN

A novel Ag3PO4/ZnWO4-modified graphite felt electrode (AZW@GF) was prepared by drop coating method and applied to photoelectrocatalytic removal of harmful algae. Results showed that approximately 99.21% of chlorophyll a and 91.57% of Microcystin-LR (MCLR) were degraded by the AZW@GF-Pt photoelectrocatalytic system under the optimal operating conditions with a rate constant of 0.02617 min-1 and 0.01416 min-1, respectively. The calculated synergistic coefficient of photoelectrocatalytic algal removal and MC-LR degradation by the AZW@GF-Pt system was both larger than 1.9. In addition, the experiments of quenching experiments and electron spin resonance (ESR) revealed that the photoelectrocatalytic reaction mainly generated •OH and •O2- for algal removal and MC-LR degradation. Furthermore, the potential pathway for photoelectrocatalytic degradation of MC-LR was proposed. Finally, the photoelectrocatalytic cycle algae removal experiments were carried out on AZW@GF electrode, which was found to maintain the algae removal efficiency at about 91% after three cycles of use, indicating that the photoelectrocatalysis of AZW@GF electrode is an effective emergency algae removal technology.


Asunto(s)
Electrodos , Grafito , Toxinas Marinas , Microcistinas , Compuestos de Plata , Grafito/química , Grafito/efectos de la radiación , Microcistinas/química , Microcistinas/aislamiento & purificación , Catálisis , Compuestos de Plata/química , Fosfatos/química , Óxidos/química , Técnicas Electroquímicas , Tungsteno/química , Clorofila A/química , Zinc/química , Purificación del Agua/métodos , Clorofila/química , Procesos Fotoquímicos , Floraciones de Algas Nocivas
19.
Open Vet J ; 14(1): 545-552, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633155

RESUMEN

Background: Nanoparticles are regarded as magical bullets because of their exclusive features. Recently, the usage of nanoparticles has progressed in almost all aspects of science and technology due to its ability to revolutionize certain fields. In the field of food science and technology, the application of nanoparticles is being researched in many various areas thus provides the dairy industry with a variety of new attitudes for developing the quality, prolong shelf life, ensure the safety and healthiness of foods. Aim: This study aimed to focus on the application of some inorganic metal oxide nanoparticles (zinc oxide (ZnO), magnesium oxide (MgO), and calcium oxide (CaO)) to control E. coli in raw milk and ensure its safety. Methods: The antibacterial action of certain nanoparticles (ZnO, MgO, and CaO) with multiple concentrations (0.1, 0.05, 0.025, 0.0125, 0.006, and 0.003 mg/ml) was evaluated against E. coli strains in ultra heat treated (UHT) milk samples. Also, storage temperature and storage period effects were studied. Results: The findings of the current research revealed that inorganic metal oxide nanoparticles had a significant antibacterial role against E. coli, in the following order; ZnO, MgO, and CaO, respectively. The antibacterial effect of inorganic metal oxide nanoparticles is more noticeable at lower temperatures. Conclusion: Inorganic metal nanoparticles can be used in the food industry for the purpose of the control of E. coli, and extension of the shelf life of dairy products.


Asunto(s)
Compuestos de Calcio , Nanopartículas del Metal , Óxido de Zinc , Animales , Escherichia coli , Óxido de Magnesio , Leche , Óxidos , Antibacterianos
20.
BMC Plant Biol ; 24(1): 260, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38594608

RESUMEN

BACKGROUND: The finger lime (Citrus australasica), one of six Australian endemic citrus species shows a high natural phenotypic diversity and novel characteristics. The wide variation and unique horticultural features have made this lime an attractive candidate for domestication. Currently no haplotype resolved genome is available for this species. Here we present a high quality, haplotype-resolved reference genome for this species using PacBio HiFi and Hi-C sequencing. RESULTS: Hifiasm assembly and SALSA scaffolding resulted in a collapsed genome size of 344.2 Mb and 321.1 Mb and 323.2 Mb size for the two haplotypes. The nine pseudochromosomes of the collapsed genome had an N50 of 35.2 Mb, 99.1% genome assembly completeness and 98.9% gene annotation completeness (BUSCO). A total of 41,304 genes were predicted in the nuclear genome. Comparison with C. australis revealed that 13,661 genes in pseudochromosomes were unique in C. australasica. These were mainly involved in plant-pathogen interactions, stress response, cellular metabolic and developmental processes, and signal transduction. The two genomes showed a syntenic arrangement at the chromosome level with large structural rearrangements in some chromosomes. Genetic variation among five C. australasica cultivars was analysed. Genes related to defense, synthesis of volatile compounds and red/yellow coloration were identified in the genome. A major expansion of genes encoding thylakoid curvature proteins was found in the C. australasica genome. CONCLUSIONS: The genome of C. australasica present in this study is of high quality and contiguity. This genome helps deepen our understanding of citrus evolution and reveals disease resistance and quality related genes with potential to accelerate the genetic improvement of citrus.


Asunto(s)
Compuestos de Calcio , Citrus , Citrus/genética , Resistencia a la Enfermedad/genética , Australia , Óxidos , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...